powered by multiNETT - Internet-Systementwicklung



QTRAP 6500 (SelexIon/NanoMate)
QExactive (UPLC/NanoMate)
QTRAP 5500 (nUPLC/NanoMate)
QSTAR Elite (NanoMate)
Quattro II


Lipidomics aims at investigating biological functions of lipids in health and disease. Although this research field has only recently emerged, it is rapidly expanding as lipids are increasingly recognized as important modulators of many intracellular processes, ranging from regulation of protein function to modulation of cellular pathways. Cellular lipidomes contain thousands to ten of thousands individual molecular lipid species. Mass spectrometric lipid analysis provides a tool to obtain both qualitative and quantitative data on individual lipid species present in biological samples.
Heidelberg Lipidomics builds on unique expertise in qualitative and quantitative lipid analysis by nano-mass spectrometry (nano-MS). MS/MS-based lipidomics allows defining the lipid composition of samples ranging in their profiles from simple to complex, such as from protein-lipid-assemblies to total cells, tissues or organisms.
Applying automated sample infusion by mircofluidic-based nano-electrospray ionization (ESI) high throughput measurements of up to 400 samples per series can be performed.
In house developed/adapted software manage spectra processing for identification and quantification of individual lipid species.

Including automated lipid extractions we aim at establishing a fully automated lipidomics approach, with the advantage of standardized work flows for the processing of high sample numbers, such as in screenings for lipophilic marker to elucidate pathological alterations of biological samples.


Depending on the scientific question complementary nano-platforms are available based on e.g. hybrid quadrupole time-of-flight mass spectrometers, hybrid triple quadrupole linear ion trap mass spectrometers, triple quadrupole mass spectrometers and hybrid quadrupole-orbitrap mass spectrometers. Liquid and ion mobility chromatography systems are operated in online MS mode. Sample injection is performed by direct (manuel) injection or CHIP-based via a NanoMate system.


Hacke M, Björkholm P, Hellwig A, Himmels P, Ruiz de Almodovar C, Brügger B, Wieland F, Ernst AM Inhibition of Ebola virus glycoprotein-mediated cytotoxicity by targeting its transmembrane domain and cholesterol . Nature Comm. 2015;6:7688.

Harner ME, Unger AK, Izawa T, Walther DM, Ozbalci C, Geimer S, Reggiori F, Brügger B, Mann M, Westermann B, Neupert W. Aim24 and MICOS modulate respiratory function, tafazzin-related cardiolipin modification and mitochondrial architecture. Elife. 2014;3:e01684.

Gerl MJ, Sachsenheimer T, Grzybek M, Coskun U, Wieland FT, Brügger B. Analysis of transmembrane domains and lipid modified peptides with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Anal Chem. 2014; 86(8):3722-6.

Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem. 2014;83:79-98.

Haberkant P, Raijmakers R, Wildwater M, Sachsenheimer T, Brügger B, Maeda K, Houweling M, Gavin AC, Schultz C, van Meer G, Heck AJ, Holthuis JC. In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. Angew Chem Int Ed Engl. 2013;52(14):4033-8.

Duran JM, Campelo F, van Galen J, Sachsenheimer T, Sot J, Egorov MV, Rentero C, Enrich C, Polishchuk RS, Goñi FM, Brügger B, Wieland F, Malhotra V. Sphingomyelin organization is required for vesicle biogenesis at the Golgi complex. EMBO J. 2012;31(24):4535-46.

Zhao H, Williams DE, Shin JB, Brügger B, Gillespie PG. Large membrane domains in hair bundles specify spatially constricted radixin activation. J Neurosci. 2012;32(13):4600-9.

Contreras FX, Ernst AM, Haberkant P, Björkholm P, Lindahl E, Gönen B, Tischer C, Elofsson A, von Heijne G, Thiele C, Pepperkok R, Wieland F, Brügger B. Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 2012;481(7382):525-9.

Schmidt A, Oberle N, Weiß EM, Vobis D, Frischbutter S, Baumgrass R, Falk CS, Haag M, Brügger B, Lin H, Mayr GW, Reichardt P, Gunzer M, Suri-Payer E, Krammer PH. Human Regulatory T Cells Rapidly Suppress T Cell Receptor-Induced Ca2+, NF-κB, and NFAT Signaling in Conventional T Cells.
Sci Signal. 2011;4(204):ra90.

Sancar G, Sancar C, Brügger B, Ha N, Sachsenheimer T, Gin E, Wdowik S, Lohmann I, Wieland F, Höfer T, Diernfellner A, Brunner M. A global circadian repressor controls antiphasic expression of metabolic genes in Neurospora. Mol Cell. 2011;44(5):687-97.

Osman C, Haag M, Wieland FT, Brügger B, Langer T. A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J. 2010;29(12):1976-87.

Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319(5867):1244-7.
Kassmann CM, Lappe-Siefke C, Baes M, Brügger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA. Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet. 2007;39(8):969-76.

Takamori S, Holt M, Stenius K, Lemke EA, Grønborg M, Riedel D, Urlaub H, Schenck S, Brügger B, Ringler P, Müller SA, Rammner B, Gräter F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmüller H, Heuser J, Wieland F, Jahn R. Molecular anatomy of a trafficking organelle. Cell 2006;127(4):831-46.

Brügger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Kräusslich HG. The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 2006;103(8):2641-6.

Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci USA 1997;94(6):2339-44.

Britta Brügger