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Unconventional secretory proteins represent a subpop-

ulation of extracellular factors that are exported from

eukaryotic cells by mechanisms that do not depend

on the endoplasmic reticulum and the Golgi complex.

Various pathways have been implicated in unconven-

tional secretion including those involving intracellular

membrane-bound intermediates and others that are

based on direct protein translocation across plasma

membranes. Interleukin 1β (IL1β) and fibroblast growth

factor 2 (FGF2) are classical examples of unconventional

secretory proteins with IL1β believed to be present in

intracellular vesicles prior to secretion. By contrast, FGF2

represents an example of a non-vesicular mechanism of

unconventional secretion. Here, the author discusses the

current knowledge about the molecular machinery being

involved in FGF2 secretion. To reveal both differential

and common requirements, this review further aims at

a comprehensive comparison of this mechanism with

other unconventional secretory processes. In particular,

a potentially general role of tyrosine phosphorylation as

a regulatory signal in unconventional protein secretion

will be discussed.
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Around 20 years ago in the early 1990s, following the iden-
tification of a number of seemingly unrelated examples
of soluble extracellular factors without hydrophobic sig-
nal sequences, unconventional protein secretion was
first recognized as a potentially general phenomenon (1).
Among the first cases were extracellular factors such
as interleukin 1β (IL1β) (2), galectin 1 (3) as well as
fibroblast growth factor (FGF) 1 (4) and FGF2 (5,6), pro-
teins that are now well established as classic examples
of unconventional secretory proteins (7,8). Ever since,
the list of proteins suggested to exit cells in an
endoplasmic reticulum (ER)/Golgi-independent manner
has been steadily growing and now, among others,

includes proteins such as annexins (9), thioredoxin (10),
high mobility group box (HMGB) proteins (11–14), acyl-
CoA-binding protein (15–17) as well as viral proteins
with HIV Tat being the most prominent examples
(18,19).

Unconventional secretion occurs in both constitutive and
regulated modes. For example, galectin-1 and FGF2 are
secreted from a wide range of cells without any require-
ment of an external stimulus. By contrast, secretion
of IL1β from monocytes depends on triggers such as
bacterial lipopolysaccharides as part of the inflammatory
response. Other typical triggers of unconventional secre-
tory processes are various kinds of stresses, a typical
example being exposure of cells to elevated temperature
that leads to the secretion of FGF1 (4). Stress condi-
tions also provide a link to unconventional secretory
processes in lower eukaryotes as prolonged starvation
has been shown to cause secretion of acyl-CoA-binding
protein from yeast (Acb1) and Dictyostelium (AcbA)
(15–17).

Some unconventional secretory proteins appear to func-
tion primarily, if not exclusively, in the extracellular
space with high-affinity cell surface receptors known
for IL1β (20,21) as well as FGF1 and FGF2 (22–24). By
contrast, besides their functions on cell surfaces where
they are bound to β-galactosides (25,26), galectins have
also been implicated in intracellular processes (27,28).
Finally, many unconventional secretory proteins were
long thought to function exclusively inside cells; how-
ever, proteins such as thioredoxin (10,29), HMGB pro-
teins (11,12) or AcbA/Acb1 (15–17,30) were later found
to get exported from cells under certain physiological
conditions. In the extracellular space, they appear to
serve distinct functions with the extracellular role of the
chromatin-binding protein HMGB1 as a cytokine being a
prominent example (11–14,31).

With regard to mechanisms involved in ER/Golgi-
independent protein secretion, two general types can
be distinguished. One group of unconventional secretory
proteins is characterized by the ability to interact with
membrane lipids at the inner leaflet of plasma mem-
branes (32–34). As discussed below, these interactions
are believed to result in the formation of homo- or hetero-
oligomeric complexes that may insert transiently into
membranes followed by their release into the extracel-
lular space. This type of unconventional secretion has
been defined as a non-vesicular mechanism and proteins
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such as FGF1 and FGF2, annexin A2 as well as HIV
Tat are probably secreted in this way. A second type
of unconventional protein secretion collectively refers to
mechanisms that involve intracellular transport vesicles
that are not derived from the ER/Golgi system (7,8). Three
types of such membrane-bound intermediates have been
discussed as playing a role in unconventional secretion.
These are secretory lysosomes, microvesicles forming
at cell surfaces and exosomes present in multivesicular
bodies. All three have been implicated in regulated secre-
tion of IL1β (33). Another example is Acb1/AcbA, whose
secretion was proposed to involve multivesicular bod-
ies (15,17,30,33). In this case, initial capturing is thought
to be mediated by autophagosomes that, in turn, fuse
with multivesicular bodies (15,17,30). For other uncon-
ventional secretory proteins such as galectins, thioredoxin
and HMGB1, it is less clear whether they are secreted by
non-vesicular or vesicle-dependent mechanisms of uncon-
ventional secretion.

The Unconventional Secretory Machinery

of FGF2

For many years following its discovery in the late
1980s (5,6,35–37), the mechanistic aspects of the uncon-
ventional secretory route of FGF2 remained elusive (38).
Recently, however, insight into molecular components
and mechanistic details of the secretory machinery of
FGF2 has been gained (7,8,33). A first key observation
was made with an in vitro system using affinity-purified
plasma membrane inside–out vesicles that expose the
cytoplasmic leaflet on their surfaces. In these experi-
ments, FGF2 was found to be capable of traversing plasma
membranes in a directional manner accumulating in the
lumen of such vesicles (39,40). These findings suggested
that the unconventional secretory route of FGF2 does not
involve intracellular membrane-bound intermediates but
rather represents some type of direct protein translocation
across the plasma membrane. On the basis of a C-terminal
cluster of basic amino acids, FGF2 was then identi-
fied as a phosphoinositide-binding protein (8,41). Using
a novel flow cytometry assay to study protein–lipid inter-
actions (42), FGF2 was shown to bind to PI(4,5)P2 with
high specificity. This interaction mediates recruitment of
FGF2 at the inner leaflet of plasma membranes and was
shown to be essential for FGF2 membrane translocation.
Reduction of cellular PI(4,5)P2 levels induced by RNAi-
mediated downregulation of PIP kinases caused a sub-
stantial drop in FGF2 secretion efficiency. Likewise, FGF2
variant forms that cannot bind PI(4,5)P2 were impaired
with regard to secretion rates. These findings establish
that PI(4,5)P2-mediated recruitment of FGF2 represents
an essential step in the overall process of FGF2 secretion
(8,41).

On the basis of the in vitro reconstitution experiments
discussed above it has been concluded that, following
binding to the cytoplasmic leaflet, FGF2 translocates to

the extracellular side of plasma membranes (39,40). Trans-
porters such as classical protein-conducting channels or
ABC transporters have been considered to play a role
in this process; however, no experimental evidence is
available for this hypothesis. Alternatively, it has been
speculated that PI(4,5)P2-dependent recruitment at the
inner leaflet of plasma membranes may cause FGF2
to oligomerize followed by membrane insertion (8,33).
This idea is supported by the findings showing that
binding of heparin or heparan sulfates enhances self-
oligomerization of FGF2 (43–47). As the binding site for
heparin overlaps with the binding site for PI(4,5)P2 as part
of the C-terminal basic cluster in FGF2 (41), it seems
reasonable to assume that FGF2 can form PI(4,5)P2-
induced dimers and possibly higher oligomers already
inside cells. Therefore, as an alternative to the trans-
porter hypothesis, it has been speculated that PI(4,5)P2-
induced oligomerization may cause FGF2 to penetrate
plasma membranes as a key mechanism of membrane
translocation.

To further discriminate between transporter-dependent
and membrane insertion-mediated translocation models
of unconventional secretion, the folding state of FGF2
during membrane translocation was investigated. The
rationale for this was that all known examples of protein-
conducting channels analyzed at the molecular level such
as Sec61 of the ER (48) or the TIM/TOM machineries of
the inner and outer membranes of mitochondria (49) as
well as protein-conducting ABC transporters (50) require
cargo proteins to be largely unfolded during membrane
translocation. By contrast, a mechanism of membrane
translocation that is based on oligomerization and mem-
brane insertion is probably based on the defined protein
conformations. Indeed, FGF2 membrane translocation
occurs in a folded conformation (33,51,52), a finding that
argues against a potential role for a classical protein-
conducting channel or ABC transporter in FGF2 membrane
translocation. Rather, in this sense, FGF2 secretion may
be related in some way to other membrane transloca-
tion processes in which proteins traverse membranes
in a folded conformation. This is true for protein import
into peroxisomes (53,54) and the twin arginine protein
translocation systems in bacteria and plants (55,56), pro-
cesses for which the exact mode of protein translocation
across the membrane is not understood at the molecular
level.

Although the molecular mechanism of how FGF2 phys-
ically traverses the plasma membrane remains unclear,
heparan sulfate proteoglycans have been identified as
essential factors at the extracellular side of plasma mem-
branes being required to transfer FGF2 into the extracel-
lular space (57,58). This was shown by analyzing FGF2
secretion from cells that cannot synthesize heparan sul-
fate proteoglycans and by measuring secretion rates of
FGF2 mutant forms that cannot bind to heparan sulfates.
In both cases, when the interaction between FGF2 and
heparan sulfates was prevented, a block in secretion
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was observed (58). Interestingly, FGF2 secretion could
be rescued when heparan sulfate-deficient cells express-
ing FGF2 (donor cells) were cocultivated with heparan
sulfate-expressing cells that cannot make FGF2 (acceptor
cells). Under these experimental conditions, intercellular
transfer of FGF2 was observed, resulting in the accumula-
tion of FGF2 on cell surfaces of the acceptor cells where
it was bound to heparan sulfates. Intriguingly, this rescue
was dependent on the distance between the two cell pop-
ulations showing that heparan sulfate proteoglycans are
required in a membrane proximal orientation to drive FGF2
membrane translocation. This observation confirms direct
translocation across plasma membranes as the mecha-
nism of FGF2 secretion. These findings defined heparan
sulfate proteoglycans as FGF2 export receptors and led
to the molecular trapping hypothesis proposing multiple
roles for heparan sulfate proteoglycans in FGF2 secretion,
storage on cell surfaces and the extracellular matrix as well
as in FGF2 signaling (57). In conclusion, the overall pro-
cess of unconventional secretion of FGF2 relies on direct
translocation of folded FGF2 molecules across the plasma
membrane with differential requirements for PI(4,5)P2 at
the inner leaflet and heparan sulfate proteoglycans at the
extracellular side to drive directional transport of FGF2 into
the extracellular space.

How to Identify Additional Molecular

Components of the FGF2 Secretion
Machinery?

As discussed above, substantial insight into various
aspects of the unconventional secretory route of FGF2
has been gained; however, the molecular mechanism by
which FGF2 physically traverses the plasma membrane
remains a mystery. Likewise, it is unclear whether the
biological functions of FGF2 are regulated at the level
of secretion. This is because FGF2 secretion has so far
been reported as a constitutive process (38,59), with the
physiological functions of FGF2 being controlled at the
expression level and/or at the level of its mobilization from
storage sites on cell surfaces and the extracellular matrix.
However, recent evidence suggests that FGF2 secretion
from primary skin-derived fibroblasts can be stimulated
by activation of the inflammasome (60). It remains to be
established whether this latter case represents a cell type-
specific phenomenon or whether the biological activity of
FGF2 can generally be regulated at the level of secretion.
In any case, to address these questions, it is clear that
additional insight into molecular components involved in
the overall process of FGF2 secretion is required. To con-
duct a comprehensive and unbiased analysis to identify
gene products involved in FGF2 secretion from human
cells, a genome-wide screening approach using siRNA
arrays was conducted (61). For this purpose, a classic
FGF2 secretion assay that is based on flow cytometry (36)
was adapted to a multiwell screening platform allowing
for the analysis of all gene products known in the human
genome.

The first gene product that was identified with this
approach turned out to be Tec, one of the several hundred
kinases known in the human genome. Tec kinase is the
eponymous member of the Tec family of non-receptor
tyrosine kinases (62). They are expressed in a wide range
of vertebrate tissues; however, the best characterized
members of this protein family, Itk and Btk, are found pri-
marily in cells of the hematopoietic lineage and play critical
roles in B- and T-cell development and function (62,63).
Tec kinases act downstream of various kinds of receptors
and are activated by tyrosine phosphorylation which is
catalyzed by Src kinases. Following activation, they are
recruited to the inner leaflet of plasma membranes medi-
ated by their pleckstrin homology (PH) domains that bind
to phosphoinositides (62).

The identification of a PH domain containing a kinase
with a putative role in FGF2 secretion was an intriguing
finding as FGF2 itself binds to phosphoinositides at the
inner leaflet of plasma membranes, a key step in the
overall process of FGF2 secretion (see above). In addition
to siRNA-mediated downregulation, a pharmacological
inhibitor of Tec kinase, LFM-A13, also impaired FGF2
secretion. This result implied that indeed the enzymatic
activity of Tec kinase is required in some way to support
FGF2 secretion. On the basis of biochemical experiments
using purified components, a direct interaction between
Tec kinase and FGF2 could be established that results in
phosphorylation of FGF2 at tyrosine 82. This modification
plays a direct role as substitution with alanine caused
a block of FGF2 secretion. By contrast, substitution of
tyrosine 82 with a phosphomimetic residue did support
FGF2 secretion in a Tec kinase-independent manner.
These results were confirmed in a physiologically relevant
cell-based assay establishing a role for Tec kinase
in FGF2 secretion-dependent proliferation of mouse
fibroblasts (61).

It is currently unclear in which way Tec kinase-mediated
tyrosine phosphorylation is required for FGF2 transport
into the extracellular space. Substitution of tyrosine 82 by
alanine causes a block in FGF2 secretion. The other way
around, a phosphomimetic residue in this position res-
cues FGF2 export from cells as well as renders FGF2
secretion independent of Tec kinase (61). These find-
ings establish that phosphorylation of FGF2 at tyrosine
82 is essential for the overall process of FGF2 secre-
tion. On the basis of the knowledge available for the
typical activation modes of Tec kinases, a conservative
guess would be that FGF2 becomes phosphorylated at
the inner leaflet of plasma membranes. This is because,
upon activation through tyrosine phosphorylation, Tec
kinases redistribute to the cytoplasmic leaflet where their
PH domains are recruited by phosphoinositides (62,63).
Thus, in turn, tyrosine phosphorylation of FGF2 might
only occur when both proteins are brought into proxim-
ity in specialized domains containing phosphoinositides
with a direct impact of this modification on the mecha-
nism of FGF2 membrane translocation. This may result in
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the secretion of FGF2 species that are phosphorylated at
tyrosine 82.

An alternative model is based on the assumption that
FGF2 is only transiently phosphorylated as part of an
essential step preceding FGF2 membrane translocation.
For example, Tec kinase may phosphorylate FGF2 already
in the cytoplasm. Even though tyrosine-phosphorylated
and, therefore, active Tec kinases are thought to primarily
localize to plasma membranes, a soluble form of Tec
kinase lacking the PH domain can both bind and
phosphorylate FGF2 in vitro (61). In this way, tyrosine
phosphorylation of FGF2 may serve as a signal for FGF2
transport into the cell periphery. Such a mechanism
might be related to the phosphorylation of transit
peptides as part of the guidance complex-dependent
mechanism of protein targeting to plant chloroplasts
(64,65).

Differential versus Common Requirements
of Unconventional Secretion of Various Cargo
Proteins

As discussed above, the phenomenon of unconventional
protein secretion does not appear to be based on a single
common pathway for all cargo proteins but rather seems
to represent a collection of distinct secretory mecha-
nisms (33). Prior to secretion, some cargo molecules are
contained in various kinds of intracellular vesicles with
IL1β (66–68) and AcbA/Acb1 being well-characterized
examples (15,17,69). Recently, a new role for autophago-
somes in this type of unconventional secretion has been
shown for AcbA/Acb1 secretion (15,17), a pathway that
might probably further involve multivesicular bodies and
that may also be relevant for IL1β secretion (15,17,30,70).
By contrast, FGF2 belongs to a class of unconventional
secretory proteins that, prior to secretion, do not appear
to be enclosed in intracellular vesicles. Rather, FGF2
binds to the inner leaflet of plasma membranes followed
by membrane translocation into the extracellular space.
Besides FGF2, other examples of this general type of
unconventional secretion are probably FGF1 (34,71,72),
HIV Tat (19,73,74) and annexins (75–77), with annexin
A2 being the best characterized example. A common
denominator of these proteins is their ability to get
recruited by membrane lipids as they interact with either
phosphoinositides or other acidic phospholipids such as
phosphatidylserine. In case of FGF2, PI(4,5)P2-dependent
recruitment to plasma membranes has been defined as
an essential step in FGF2 membrane translocation (41),
a process that has been proposed to involve the forma-
tion of FGF2 homo-oligomers (7,33). Similarly, HIV Tat has
been shown as a PI(4,5)P2-binding protein, an interac-
tion that is again essential for its secretion (19). Likewise,
both FGF1 and annexin A2 have been shown to bind
to PI(4,5)P2 and/or phosphatidylserine (78–80). Further-
more, both FGF1 and annexin A2 are contained as dimers
in hetero-oligomeric complexes that are recruited at

the cytoplasmic leaflet of plasma membranes (71,81,82).
Finally, both FGF1 and annexin A2 complexes contain dis-
tinct members of the S100 family of calcium-binding pro-
teins that are critical for their translocation to cell surfaces
(9,34,72).

Besides these similarities, many questions remain such as
a potential role of heparan sulfate proteoglycans in uncon-
ventional secretory processes other than FGF2 secretion.
This question is particularly relevant for FGF1 and HIV
Tat as both proteins are known to bind heparan sul-
fates (18,34,72). The other way around, it remains unclear
whether molecular requirements established for FGF1 and
annexin A2, such as the role of S100 proteins, also play a
role in FGF2 secretion. Clearly, however, the most critical
aspect in the molecular analysis of these unconventional
secretory processes remains the mechanism by which
FGF1, FGF2, HIV Tat and annexin A2 physically traverse
the plasma membrane to reach the extracellular space. As
discussed above for FGF2, the formal possibility of protein-
conducting channels in the plasma membrane is rather
unlikely as they typically carry unfolded proteins only.
Alternatively, some way of membrane insertion has been
discussed and indeed, experimental evidence is available
that annexin A12 is capable of penetrating membranes
as shown by spin labeling experiments (83). Although it is
unknown as to whether other annexins such as annexin
A2 have similar properties, this finding may indicate a
potential general role of membrane-inserted intermedi-
ates in unconventional protein secretion including cargos
such as FGF1, FGF2 and HIV Tat.

Tyrosine Phosphorylation – A General Signal
for Unconventional Secretion?

Tec kinase-mediated tyrosine phosphorylation has been
shown to be required for unconventional secretion of
FGF2 (61). Similar to what has been considered in
the previous section one may wonder whether this
phenomenon is a peculiar exception of the secretory
machinery of FGF2 or whether tyrosine phosphoryla-
tion might represent a general signal in unconventional
secretion. Indeed, at least three other unconventional
secretory proteins have been experimentally shown to
undergo tyrosine phosphorylation, annexin A1 (84) and
A2 (9,85,86) as well as galectin-3 (87). Although it is
unknown whether this modification is relevant for the
secretion of annexin A1 and galectin-3, direct evidence
has been reported for a role of tyrosine phosphoryla-
tion of annexin A2 in membrane translocation of the
annexin A2-S100A10 heterotetramer to cell surfaces (9).
Thus, striking similarities exist between the secretory
mechanisms of FGF2 and annexin A2 in that both pro-
teins bind to PI(4,5)P2 at the inner leaflet concomitant
with homo- and/or hetero-oligomerization, are secreted by
direct translocation across plasma membranes and make
use of tyrosine phosphorylation as a signal for membrane
translocation.
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In conclusion, following many years without a clear pic-
ture, insight into the molecular mechanisms of unconven-
tional secretory processes is emerging. This is true for
both vesicular and non-vesicular modes of unconventional
secretion and it can be expected that both differential and
common requirements along with the molecular mecha-
nisms being involved can be delineated in the years to
come.

Acknowledgments

Work in the laboratory of the author is supported by the German
Research Foundation (DFG; SFB 638, TRR83 and GRK 1188), the
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