• Home
  • ENGLISH lang
    • lang ENGLISH
    • lang GERMAN
  • Contact
  • About the BZH
  • Seminars
  • Zutrittsregelungen Corona
  • Search
  • lang
    • lang
    • lang
BIOCHEMIEZENTRUM HEIDELBERG UNIVERSITY OF HEIDELBERG
RESEARCH GROUPS
  • Brügger
  • Brunner
  • Höglinger
  • Hurt
  • Jeske
  • Krauth-Siegel
  • Lechner
  • Nickel
  • Peschek
  • Russell
  • Sinning
  • Söllner
  • Wieland
  • Former Research Groups
PAGES
  • Research Groups
  • Teaching at the BZH
  • BZH Graduate Program
  • Facilities
  • Research Networks
  • Open Positions
GENERAL PAGES
  • Contact
  • About the BZH
  • Seminars
  • Zutrittsregelungen Corona
  • Research Groups
    • Britta Brügger
    • Michael Brunner
    • Doris Höglinger
    • Ed Hurt
    • Mandy Jeske
    • Luise Krauth-Siegel
    • Johannes Lechner
    • Walter Nickel
    • Jirka Peschek
    • Rob Russell
    • Irmgard Sinning
    • Thomas Söllner
    • Felix Wieland
    • Former Research Groups »
  • Teaching at the BZH
  • BZH Graduate Program
  • Facilities
  • Research Networks
  • Open Positions

Groupleader: Jirka Peschek

RNA Processing and Repair 

Group Leader Jirka Peschek

Jirka Peschek

RNA Processing and Repair

  • Research
  • CV
  • Lab Members
  • Publications
  • Funding
  • Open Positions
  • Contact
select submenu

Research 




The cellular pool of ribonucleic acids (RNAs) is immensely diverse and complex. During their biosynthesis, RNA molecules undergo a vast number of co- and posttranscriptional processing and modification steps, which require dedicated enzyme machinery.
 
tRNA Splicing
One unique example of RNA processing is non-conventional splicing of RNAs, which is an essential step during transfer RNA (tRNA) maturation. tRNAs are transcribed as precursor transcripts (pre-tRNA) and are subjected to multiple posttranscriptional processing events before they can fulfil their function. Intron-containing pre-tRNAs undergo non-conventional splicing—a cytosolic, enzyme-catalysed processing reaction. The splicing of pre-tRNAs occurs in two steps: The intron is first excised by a splicing endonuclease and the resulting tRNA exon halves are ligated by tRNA ligase to form a fully matured functional tRNA. Because eukaryotic tRNA introns disrupt the anticodon stem-loop structure, the removal of these introns is an essential process.

In our lab, we aim to comprehend the structure and function of the eukaryotic tRNA splicing machinery. The mechanistic and structural insights will provide a comprehensive picture of how tRNA splicing enzymes function in the cell.
 
RNA Repair
While there is a substantial understanding for the various RNA maturation and degradation pathways, much less attention has been given to RNA repair and quality control. RNA can be subjected to damage through non-enzymatic hydrolysis or the action of endonucleases. These RNA cleavage events can be “sealed” by RNA ligases, which catalyse the ligation via phosphodiester bonds. We aim to uncover new RNA repair and quality control pathways based on these enzymes.
 
Our Approach
Using an interdisciplinary approach from protein and RNA biochemistry to structural biology and yeast genetics, we analyse the machinery and mechanisms that maintain RNA integrity. We often start by in vitro reconstitution of enzyme complexes, to determine their structure-function relationships. Once we purified protein, we study it using x-ray crystallography, cryo-electron microscopy (cryo-EM) as well as biophysical and biochemical methods. We explore the cellular role of RNA processing enzymes in the yeast Saccharomyces cerevisiae and mammalian cells.

CV 


Academic Training and Positions
Since 2020 Emmy Noether Group Leader, Biochemistry Center, Heidelberg University
2013-2020 Postdoc with Peter Walter, UCSF, San Francisco, USA
2012 PhD (Biochemistry), Technical University of Munich
2008-2012 PhD student with Johannes Buchner, Technical University of Munich
Awards and Honours
2020 Emmy Noether Fellowship
2014-2017 Human Frontier Science Program Fellow
2017 The Protein Society, Hans Neurath Outstanding Promise Travel Award
2009-2011 Studienstiftung des deutschen Volkes, Doctoral Scholarship

 

Lab Members 



Publications 


Selected Publications

Peschek J & Walter P (2019) tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay. eLife 8:e44199.


Li W, Okreglak V, Peschek J, Kimmig P, Zubradt M, Weissman JS, Walter P (2018) Engineering ER-stress dependent non-conventional mRNA splicing. eLife 7: e35388.

Peschek J, Acosta-Alvear D, Mendez AS, Walter P (2015) A conformational RNA zipper promotes intron ejection during non-conventional XBP1 mRNA splicing. EMBO Rep. 16(12):1688-98.


Mainz A, Peschek J, Stavropoulou M, Back KC, Bardiaux B, Asami S, Prade E, Peters C, Weinkauf S, Buchner J, Reif B (2015) The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nat Struct Mol Biol. 22(11):898-905.

Feige MJ, Gräwert MA, Marcinowski M, Hennig J, Behnke J, Ausländer D, Herold EM, Peschek J, Castro CD, Flajnik M, Hendershot LM, Sattler M, Groll M, Buchner J (2014) The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. PNAS 111(22):8155-60.

Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmüller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of αB-crystallin. PNAS 110(40):E3780-9.

Drazic A, Tsoutsoulopoulos A, Peschek J, Lee Y, Gebendorfer KM, Winter J (2013) Role of cysteines in the stability and DNA-binding activity of the hypochlorite-specific transcription factor HypT. PLOS ONE 8(10):e75683.

Müller R, Gräwert MA, Kern T, Madl T, Peschek J, Sattler M, Groll M, Buchner J (2013) High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation. PNAS 110(25):10183-8.

Drazic A, Miura H, Peschek J, Le Y, Bach NC, Kriehuber T, Winter J (2013) Methionine oxidation activates a transcription factor in response to oxidative stress. PNAS 110(23):9493-8.

Braun N, Zacharias M, Peschek J, Kastenmüller A, Zou J, Hanzlik M, Haslbeck M, Rappsilber J, Buchner J, Weinkauf S (2011) Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. PNAS 108(51):20491-20496.

Peschek J, Braun N, Franzmann TM, Georgalis Y, Haslbeck M, Weinkauf S, Buchner J (2009) The eye lens chaperone α-crystallin forms defined globular assemblies. PNAS 106(32):13272-13277.

Reviews and Method Papers

Karagöz GE, Peschek J, Walter P, Acosta-Alvear D (2019) In vitro RNA Cleavage Assays to Characterize IRE1-dependent RNA Decay. Bio-protocol 9(14):e3307. 

Haslbeck M, Peschek, Buchner J, Weinkauf S (2016) Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochim Biophys Acta 1860(1 Pt B):149-66. [Review]

Complete List of Publications
ORCID iD iconhttps://orcid.org/0000-0001-8158-9301

Funding 











 

Open Positions 


We are permanently looking for highly motivated Bachelor/Master/Diploma and PhD students to join our team.
If interested, please send your application including a CV, a letter of motivation and possible references to: jirka.peschek@bzh.uni-heidelberg.de
 
For students of Biochemistry, Molecular Biotechnology and Molecular Biosciences: If you are interested in a lab rotation and want to learn more about ongoing projects in the lab, please send us an email.
 
PhD Student Position in Structural Biochemistry

Contact



Heidelberg University
Biochemistry Center (BZH)
Im Neuenheimer Feld 328
69120 Heidelberg

Office:
+49 6221 54-4151
Lab:
+49 6221 54-4235
Fax:
+49 6221 54-4369
E-Mail:
jirka.peschek@bzh.uni-heidelberg.de


LOGO Biochemizentrum Heidelberg Heidelberg University Biochemistry Center (BZH)
Im Neuenheimer Feld 328
69120 Heidelberg
RESEARCH GROUPS
  • Brügger
  • Brunner
  • Höglinger
  • Hurt
  • Jeske
  • Krauth-Siegel
  • Lechner
  • Nickel
  • Peschek
  • Russell
  • Sinning
  • Söllner
  • Wieland
  • Former Research Groups »
PAGES
  • Research Groups
  • Teaching at the BZH
  • BZH Graduate Program
  • Facilities
  • Research Networks
  • Open Positions
GENERAL PAGES
  • Contact
  • About the BZH
  • Seminars
  • Zutrittsregelungen Corona
  • Search
  • BZH intern

imprint BZH | publishing information | privacy policy
© All Rights Reserved, Heidelberg University Biochemistry Center (BZH)