Post-translational timing mechanisms of the Drosophila circadian clock. FEBS Lett. (585), 1443-1449.
F. Weber, D. Zorn, C. Rademacher and H-C. Hung (2011)
The E3 ubiquitin ligase CTRIP controls CLOCK levels and PERIOD oscillations in Drosophila. EMBO Rep. (12), 549-557.
A. Lamaze, A. Lamouroux, C. Vias, H-C. Hung, F. Weber and F. Rouyer (2011)
Cytoplasmic interaction with CYCLE promotes the post-translational processing of the circadian CLOCK protein. FEBS Lett. (583), 1561-1566.
C. Maurer, H-C. Hung and F. Weber (2009)
HSP90, a capacitor of behavioural variation. J. Biol. Rhythms. (24), 183-192.
H-C. Hung, S. Kay and F. Weber (2009)
Remodelling the clock: Co-activators and signal transduction in the circadian clock works. Naturwissenschaften 2009 (96), 321-337. (Review)
F. Weber (2009)
Sequential and compartment-specific phosphorylation controls the life cycle of the circadian CLOCK protein. J Biol Chem. (284), 23734-23742.
H-C. Hung, C. Maurer, D. Zorn, W-L. Chang and F. Weber (2009)
B- and T-cell development both involve activity of the unfolded protein response pathway. J Biol Chem. (283), 17954-17961.
R. Brunsing, S.A. Omori, F. Weber, A. Bicknell, L. Friend, R. Rickert, M. Niwa (2008)
A role for the CREB-binding protein in behavioural regulation. BMC Neuroscience, Suppl. 1: P28.
Hung HC, Maurer C, Weber F. (2007)
Circadian transcription depends on limiting amounts of the transcription co-activator nejire/CBP. J Biol Chem. (282), 31349-31357.
Hung HC, Maurer C, Kay SA, Weber F. (2007)
Second messenger and Ras/MAPK signalling pathways regulate CLOCK/CYCLE-dependent transcription. J Neurochem. (98), 248-257.
Weber F, Hung HC, Maurer C, Kay SA. (2006)
A PERIOD-inhibitor buffer introduces a delay mechanism for CLK/CYC-activated transcription. FEBS Lett. (555), 341-345.
F. Weber and S.A. Ka (2003)
Structural plasticity and non-covalent substrate binding in the GroEL apical domain: A study using electrospray ionisation mass spectrometry and fluorescence binding studies. J Biol Chem. (277), 33115-33126.
A.E. Ashcroft, A. Brinker, J.E. Coyle, F. Weber, M. Kaiser, L. Moroder, M.R. Parsons,J. Jager, U.F. Hartl, M. Hayer-Hartl, S.E. Radford (2002)
Prevention of rhodanese aggregation by the chaperonin GroEL. Meth. in Mol. Biol. (140), 111-116.
F. Weber and M.K. Hayer-Hartl (2000)
Refolding of bovine mitochondrial rhodanese by chaperonins GroEL and GroES. Meth. in Mol. Biol. (140), 117-126.
F. Weber and M.K. Hayer-Hartl (2000)
Removing trace fluorescent contaminants from preparations of GroEL. Meth. in Mol. Biol. (140), 63-64.
F. Weber (2000)
The oligomeric structure of GroEL-GroES is required for biological significant chaperonin function in protein folding. Nature Struct. Biol. (11), 977-985.
F. Weber, F. Keppel, C. Georgopoulos, M.K. Hayer-Hartl and F.U. Hartl (1998)
Mechanism of chaperonin action: GroES binding and release can drive GroEL-mediated protein folding in the absence of ATP. EMBO J. (15), 6111-6121.
M.K. Hayer-Hartl, F. Weber and F.U. Hartl (1996)
J. Chem. Soc. Dalton trans. (6), 799.
L.F. Julie, E. Schatz, M.D. Ward, F. Weber and L.J. Yellowlees (1994)